Sommaire

  • A. Quel rapport entre la Covid-19 et la pneumonie ?
  • B. PCR, test antigénique, quelles différences ?
  • B-bis. Tests Covid : pourquoi existe-t-il différentes voies de prélèvement ?
  • C. Le SARS-CoV-2 et l’humain viennent-ils de se rencontrer ?
  • D. La maladie Covid-19, c’est une grosse grippe ?
  • E. Comment limiter la transmission ?
  • F. Quelles pistes de vaccin suit-on contre la Covid-19 ?
  • G. Pourquoi mettre au point un vaccin prend-il habituellement si longtemps ?
  • G.bis – Comment a-t-on pu gagner du temps pour trouver un vaccin contre la Covid-19 ?
  • H. Pourquoi le virus ne s’attaque qu’à certains organes ?
  • I. Comment une maladie peut-elle passer de l’animal à l’homme ?
  • J. Quels traitements contre le SARS-CoV-2  ?
  • K. Comment peut-on guérir sans traitement ?
  • L. Le SARS-CoV-2 fait-il perdre l’odorat et le goût ?
  • M. Hors de son hôte, comment éliminer le virus SARS-CoV-2 ?
  • N. Comment peut-on être porteur du virus et ne pas avoir de symptômes ?
  • O. Pourquoi certains cas de Covid-19 sont-ils graves ?
  • P. Sans anticorps, notre organisme peut-il se défendre ?
  • Q. Pourquoi les traitements contre les virus sont-ils très différents de ceux contre les bactéries ?
  • R. Comment chercher un antiviral contre le SARS-CoV-2 ?
  • S. Mais où est passé le pangolin ?
  • T. Pourquoi le sida et le paludisme n’ont-ils pas leurs vaccins ?
  • U. Vaccin atténué, inactivé, sous-unitaire, à vecteur ou à ARN, quelles différences ?
  • V. D'où viennent les variants ?
  • W. Que sont ces variants du SARS-CoV-2 ?
  • X. Vaccin à ARN : de l’idée à la production
  • Y.  Pourquoi une personne vaccinée peut-elle encore transmettre le virus ?
  • Z. Pourquoi avons-nous besoin de rappels ?
  • 29. Qu'est ce que le Covid long ?
  • 30. Comment les anticorps luttent-ils contre le SARS-CoV-2 ?
  • 31. Quels sont les effets secondaires des vaccins contre la Covid-19 ?

R. Comment chercher un antiviral contre le SARS-CoV-2 ?

Concevoir un nouveau médicament est un processus très long. Face à l’urgence sanitaire liée à la Covid-19, les chercheurs du monde entier se sont tournés vers des médicaments antiviraux déjà utilisés contre d’autres pathologies. On parle de repositionnement. Mais pour l’heure, les résultats sont décevants.

Seul un antiviral utilisé contre le VIH réduit de quelques jours le temps passé à l’hôpital par les patients atteints de la Covid-19 : le remdesivir. En revanche, il ne démontre pas d’effet sur la mortalité. Ce médicament agit sur une protéine virale dont le rôle est de copier le matériel génétique du virus, nucléotide après nucléotide. Le remdesivir est un analogue de l’un de ces nucléotides, qui, une fois incorporé dans la chaîne fraîchement constituée, la bloque. La réplication du virus devrait être ainsi empêchée… mais dans le cas du SARS-CoV-2, elle est seulement réduite. Cette efficacité décevante est sans doute due à une particularité des coronavirus : ils possèdent une protéine capable de détecter et retirer les erreurs introduites dans la copie en cours de production.

Puisque les médicaments déjà connus manquent d’efficacité contre la Covid-19, il faut en concevoir de nouveaux. La méthode consiste à bien connaître les cibles susceptibles de bloquer le développement du virus (voir question Q). C’est ainsi que les chercheurs ont déterminé la structure tridimensionnelle de plusieurs protéines virales, soit la façon dont les atomes sont liés les uns aux autres dans l’espace et forment ces énormes molécules. Ils modélisent ensuite in silico, c’est-à-dire informatiquement, la fixation entre des molécules candidates et une de ces protéines virales pour choisir celles qui pourraient inhiber le mieux son activité. Ce préliminaire numérique pourrait permettre de gagner du temps dans la sélection de molécules à synthétiser et à tester ensuite in vitro et in vivo.

Représentation en 3D d’une protéine du SARS-CoV-2 (en gris) et du blocage de son activité par la fixation de l’antiviral remdesivir.

informations mises à jour le 19/02/2021