Le boson de Higgs enfin démasqué

Le CERN vient de présenter les derniers résultats des expériences menées au sein du LHC. Comme les physiciens s’y attendaient, l’existence du fameux boson vient d’être confirmée et la masse de la particule déterminée. Et tout cela est parfaitement compatible avec le Modèle standard.

Par Yaroslav Pigenet, le 06/07/2012

Le LHC (Large Hadron Collider)

« Nous avons observé un nouveau boson ! » C'est par cette déclaration minimaliste que Joe Incadela, responsable de l’expérience CMS du LHC, a confirmé que la longue traque du boson de Brout-Englert-Higgs venait d’entrer dans une nouvelle phase. Désormais la fameuse particule n’est plus seulement une entité théorique, sa réalité physique a enfin été démontrée par l’expérience et sa masse estimée aux alentours de 125 GeV/c2. Même si la nouvelle était attendue, le petit monde de la physique est enthousiaste devant cette (nouvelle) confirmation expérimentale du Modèle standard. « Il s’agit d’un résultat très préliminaire, mais nous pensons qu’il est très significatif, très robuste », a notamment expliqué Joe Incandela au cours de la conférence organisée le 4 juillet au CERN pour présenter ces résultats.

Une particule clé

L’existence du boson de Higgs a été prédite dès 1964, non seulement par Peter Higgs, mais aussi, indépendamment, par les physiciens Gerald Guralnik, Carl Richard Hagen, Tom Kibble, Robert Brout et François Englert. Cette particule, jusqu’ici hypothétique, donnerait naissance au champ de Higgs, dans lequel « baignerait » l’Univers entier et qui conférerait aux autres particules leur masse spécifique.

<h2>La masse des particules</h2> <p><p>C'était avant l'annonce le 4 juillet 2012 de la découverte au Cern du boson de <a href="http://www.universcience.tv/nom-higgs.html" _fcksavedurl="http://www.universcience.tv/nom-higgs.html">Higgs</a> , tellement attendue par la communauté scientifique ! Le physicien Étienne Klein nous expliquait alors l'importance de la découverte à venir... Retrouvez toutes nos informations sur cette découverte historique sur <a title="Science Actualités" href="http://petitlien.fr/5zim" _fcksavedurl="http://petitlien.fr/5zim" target="_blank">Science Actualités</a>.<br /><br />Réalisation : Roland Cros <br /><br />Production : Universcience 2010</p></p>

À ce titre, le Higgs est à la fois la clé de voûte et l’ultime pièce manquante du Modèle standard de la physique des particules. En effet, bien que prédite par la théorie, cette particule élémentaire n’avait jusqu’ici jamais été observée expérimentalement, contrairement à toutes les autres particules postulées par ce même modèle.

Le Modèle standard, c'est quoi ?

Les particules du Modèle standard

La matière qui nous entoure est constituée de particules élémentaires décrites avec un haut degré de précision par une théorie appelée « Modèle standard ». Développé dans la deuxième moitié du XX ème siècle, ce dernier prévoit l'existence de douze particules ( et de leur douze antiparticules) qui composent la matière, les fermions, et treize autres particules, les bosons, qui assurent sa cohésion. Toutes les particules élémentaires prédites par le modèle ont fini par être observées. Toutes sauf une, qui résiste encore et toujours aux expérimentateurs : le boson de Higgs. Et c'est là que le bât blesse. Jusque là cantonnée au statut d'objet mathématique, cette particule est la clé de voûte du Modèle standard. Elle permet d'expliquer certaines incohérences mathématiques et mène à une théorie consistante et extrêmement précise sur le plan prédictif. Le défi du plus puissant accélérateur de particules au monde, le LHC, est justement de détecter la présence du Higgs et prouver ainsi sa réalité physique. Si Higgs existe, alors le Modèle standard sera validé, unifiant ainsi les trois forces fondamentales de l'infiniment petit : les interactions forte, faible et électromagnétique... mais toujours pas la gravitation, qui régit l'infiniment grand.

La discrimination par la désintégration

Cela fait maintenant trois ans que les chercheurs traquent les traces de ce boson dans les débris laissés par les collisions entre protons accélérés par le LHC à des vitesses proches de celle de la lumière.

Le Higgs ayant une existence bien trop brève pour être détecté directement, seuls les produits de sa désintégration – d’autres particules élémentaires – peuvent attester de sa présence et dévoiler ses caractéristiques inconnues, notamment sa masse. La principale difficulté étant de distinguer, au milieu de la soupe de particules produite à chaque collision, celles qui proviennent effectivement de la désintégration du Higgs de celles qui découlent d’autres phénomènes parasites générés par la collision. Sachant, en outre, que le Higgs peut emprunter plusieurs trajectoires de désintégration, donnant chacune des produits différents, et que la probabilité de chacune de ces trajectoires dépend de la masse du boson… que l’on ne connaît pas a priori. 

Une existence statistique

Simulation d'une détection de boson de Higgs

Ainsi un Higgs doté d’une masse de 100 GeV/c2 a une faible probabilité de se décomposer en deux bosons W, mais cette probabilité est beaucoup plus importante si le Higgs « pèse » 170 GeV/c2. Bref, la détection et la caractérisation du Higgs reposent sur un raisonnement statistique exploitant les données collectées pour des millions de collisions successives, et non sur une identification formelle à 100%. Cette méthode statistique a permis aux chercheurs de réduire peu à peu, expérience après expérience, l’éventail des masses possibles pour le Higgs.

Des GeV qui en font des tonnes

En physique des particules, l’électron-volt (eV) est une unité d’énergie beaucoup plus pratique à utiliser que le joule du système international (1eV= 1,60217653×10-19 J). De même, en raison de l’équivalence masse/énergie (E=mc2 donc m=E/c2) démontrée par la relativité restreinte d’Einstein, pour des raisons de commodité, on exprime la masse en électron-volt/c2 (eV/c2) plutôt qu’en kilogramme.     

Par exemple, l’ancêtre de LHC, le LEP, a permis d’exclure une masse du Higgs inférieure à 114,4 GeV/c2. Une estimation complétée par les derniers résultats fournis par l’accélérateur Tevatron, qui interdisent toute masse comprise entre 147 et 179 GeV/c2 et situent le Higgs dans l’intervalle 115-135 GeV/cavec un risque d’erreur de 3%. Enfin, en décembre 2011, les expériences ATLAS et CMS du LHC ont observé des signaux cohérents indiquant la présence d’un Higgs d’une masse de 124 à 126 GeV/c2. La probabilité d’erreur était cette fois ramenée à 0,2%. Le Graal était donc presque à portée, mais en physique des particules, pour affirmer une découverte, la probabilité d'erreur doit être inférieure à 0,00003%. 

C’est le franchissement de ce seuil de significativité statistique qui vient juste d’être annoncé par les responsables des expériences ATLAS et CMS dont les résultats seront prochainement publiés. Mieux, les deux expériences, menées indépendamment, parviennent à une estimation similaire de la masse du boson de Higgs, ce qui renforce leur validité. A savoir, 125,3 GeV/c2 selon l’expérience CMS, et 126,5 GeV/cselon l’expérience ATLAS, soit 133 fois la masse du proton, en total accord avec les masses prévisibles par le Modèle standard.

Juste un boson ?

Désintégration d'un candidat boson de Higgs

La quantité totale de données collectées et analysées par ATLAS ayant doublé depuis décembre, il paraissait donc assez probable que ce seuil statistique fatidique serait enfin franchi et que le CERN pourrait annoncer LA détection du fameux boson. Et justifier ainsi les 8,9 milliards € qu’a coûté la construction du LHC.  Mais même si on comprend Peter Higgs, 83 ans, qui considère que cette confirmation expérimentale « est la chose la plus incroyable qui soit arrivée dans sa vie », on ne peut s’empêcher de noter que la « percée » annoncée pour cette conférence consiste plutôt à confirmer et affiner une découverte prévue depuis longtemps. Comme l’a reconnu Fabiola Gianotti, responsable d’Atlas, « ceci n’est qu’un début, nous aurons besoin de plus de données pour commencer à comprendre la nature de cette particule ». Des données qui  permettront peut-être de parachever, mais aussi de dépasser voire d’invalider un Modèle standard dont, à l’instar du mathématicien Alain Connes, « personne ne pense qu’il est le fin mot de l'histoire surtout à cause du très grand nombre de paramètres libres qu'il contient ».    

Yaroslav Pigenet le 06/07/2012